Detailed Ancient History of Chemistry

This article represents history of chemistry from ancient times to the medieval era. We are going as detailed as possible. Citations will be mentioned in the end. Let’s begin.

Ancient history of Chemistry

A 100,000-year-old ochre-processing workshop was found at Blombos Cave in South Africa. It indicates that early humans had an elementary knowledge of chemistry. Paintings drawn by early humans consisting of early humans mixing animal blood with other liquids found on cave walls also indicate a small knowledge of chemistry.

The earliest recorded metal employed by humans seems to be gold, which can be found free or “native”. Small amounts of natural gold have been found in Spanish and Indian caves used during the late Paleolithic period, around 40,000 BC.

Silver, copper, tin and meteoric iron can also be found native, allowing a limited amount of metalworking in ancient cultures. Egyptian weapons made from meteoric iron in about 3000 BC were highly prized as “daggers from Heaven”.

Arguably the first chemical reaction used in a controlled manner was fire. However, for millennia fire was seen simply as a mystical force that could transform one substance into another (burning wood, or boiling water) while producing heat and light. Fire affected many aspects of early societies. These ranged from the simplest facets of everyday life, such as cooking and habitat heating and lighting, to more advanced uses, such as for making pottery and bricks and melting of metals to make tools.

It was fire that led to the discovery of glass and the purification of metals; this was followed by the rise of metallurgy. The early stages of metallurgy, methods of purification of metals were sought, and gold, known in ancient India and Egypt as early as 2900 BC, became a precious metal.

Bronze Age

Certain metals can be recovered from their ores by simply heating the rocks in a fire: notably tin, lead and (at a higher temperature) copper. This process is known as smelting. The first evidence of this extractive metallurgy dates from the 6th and 5th millennia BC, and was found in the archaeological sites of Majdanpek, Yarmovac and Plocnik, all three in Serbia. To date, the earliest copper smelting is found at the Belovode site; these examples include a copper axe from 5500 BC belonging to the Vinča culture. Other signs of early metals are found from the third millennium BC in places like Palmela (Portugal), Los Millares (Spain), and Stonehenge (United Kingdom). However, as often happens in the study of prehistoric times, the ultimate beginnings cannot be clearly defined and new discoveries are ongoing.

Mining areas of the ancient Middle East. Boxes colors: arsenic is in brown, copper in red, tin in grey, iron in reddish brown, gold in yellow, silver in white and lead in black. Yellow area stands for arsenic bronze, while grey area stands for tin bronze.
These first metals were single elements, or else combinations as naturally occurred. By combining copper and tin, a superior metal could be made, an alloy called bronze. This was a major technological shift which began the Bronze Age about 3500 BC. The Bronze Age was a period in human cultural development when the most advanced metalworking (at least in systematic and widespread use) included techniques for smelting copper and tin from naturally occurring outcroppings of copper ores, and then smelting those ores to cast bronze. These naturally occurring ores typically included arsenic as a common impurity. Copper/tin ores are rare, as reflected in the absence of tin bronzes in western Asia before 3000 BC.

After the Bronze Age, the history of metallurgy was marked by armies seeking better weaponry. States in Eurasia prospered when they made the superior alloys, which, in turn, made better armor and better weapons. Significant progress in metallurgy and alchemy was made in ancient India.

Iron Age

The extraction of iron from its ore into a workable metal is much more difficult than copper or tin. While iron is not better suited for tools than bronze (until steel was discovered), iron ore is much more abundant and common than either copper or tin, and therefore more often available locally, with no need to trade for it.

Iron working appears to have been invented by the Hittites in about 1200 BC, beginning the Iron Age. The secret of extracting and working iron was a key factor in the success of the Philistines.

The Iron Age refers to the advent of iron working (ferrous metallurgy). Historical developments in ferrous metallurgy can be found in a wide variety of past cultures and civilizations. These include the ancient and medieval kingdoms and empires of the Middle East and Near East, ancient Iran, ancient Egypt, ancient Nubia, and Anatolia (Turkey), Ancient Nok, Carthage, the Greeks and Romans of ancient Europe, medieval Europe, ancient and medieval China, ancient and medieval India, ancient and medieval Japan, amongst others. Many applications, practices, and devices associated with or involved in metallurgy were established in ancient China, such as the innovation of the blast furnace, cast iron, hydraulic-powered trip hammers, and double-acting piston bellows.

Classical antiquity and atomism

Around 420 BC, Empedocles stated that all matter is made up of four elemental substances: earth, fire, air and water. The early theory of atomism can be traced back to ancient Greece and ancient India. Greek atomism dates back to the Greek philosopher Democritus, who declared that matter is composed of indivisible and indestructible particles called “atomos” around 380 BC. Leucippus also declared that atoms were the most indivisible part of matter. This coincided with a similar declaration by Indian philosopher Kanada in his Vaisheshika sutras around the same time period. In much the same fashion he discussed the existence of gases. What Kanada declared by sutra, Democritus declared by philosophical musing. Both suffered from a lack of empirical data. Without scientific proof, the existence of atoms was easy to deny. Aristotle opposed the existence of atoms in 330 BC. Earlier, in 380 BC, a Greek text attributed to Polybus argued that the human body is composed of four humours. Around 300 BC, Epicurus postulated a universe of indestructible atoms in which man himself is responsible for achieving a balanced life.

With the goal of explaining Epicurean philosophy to a Roman audience, the Roman poet and philosopher Lucretius wrote De rerum natura (The Nature of Things) in 50 BC. In the work, Lucretius presents the principles of atomism; the nature of the mind and soul; explanations of sensation and thought; the development of the world and its phenomena; and explains a variety of celestial and terrestrial phenomena.

Much of the early development of purification methods is described by Pliny the Elder in his Naturalis Historia. He tried to explain those methods, as well as making acute observations of the state of many minerals.

Medieval alchemy

The elemental system used in medieval alchemy was developed primarily by the Persian-Arab alchemist Jābir ibn Hayyān and was rooted in the classical elements of Greek tradition. His system consisted of the four Aristotelian elements of air, earth, fire, and water in addition to two philosophical elements: sulphur, characterizing the principle of combustibility, “the stone which burns”; and mercury, characterizing the principle of metallic properties. They were seen by early alchemists as idealized expressions of irreducible components of the universe and are of larger consideration within philosophical alchemy.

The three metallic principles (sulphur to flammability or combustion, mercury to volatility and stability, and salt to solidity) became the tria prima of the Swiss alchemist Paracelsus. He reasoned that Aristotle’s four-element theory appeared in bodies as three principles. Paracelsus saw these principles as fundamental and justified them by recourse to the description of how wood burns in fire. Mercury included the cohesive principle, so that when it left the wood (in smoke) the wood fell apart. Smoke described the volatility (the mercurial principle), the heat-giving flames described flammability (sulphur), and the remnant ash described solidity (salt).

The philosopher’s stone

Alchemy is defined by the Hermetic quest for the philosopher’s stone, the study of which is steeped in symbolic mysticism, and differs greatly from modern science. Alchemists toiled to make transformations on an esoteric (spiritual) and/or exoteric (practical) level. It was the protoscientific, exoteric aspects of alchemy that contributed heavily to the evolution of chemistry in Greco-Roman Egypt, in the Islamic Golden Age, and then in Europe. Alchemy and chemistry share an interest in the composition and properties of matter, and until the 18th century they were not separate disciplines. The term chymistry has been used to describe the blend of alchemy and chemistry that existed before that time.

The earliest Western alchemists, who lived in the first centuries of the common era, invented chemical apparatus. The bain-marie, or water bath, is named for Mary the Jewess. Her work also gives the first descriptions of the tribikos and kerotakis. Cleopatra the Alchemist described furnaces and has been credited with the invention of the alembic.

During the Renaissance, exoteric alchemy remained popular in the form of Paracelsian iatrochemistry, while spiritual alchemy flourished, realigned to its Platonic, Hermetic, and Gnostic roots. Consequently, the symbolic quest for the philosopher’s stone was not superseded by scientific advances, and was still the domain of respected scientists and doctors until the early 18th century. Early modern alchemists who are renowned for their scientific contributions include Jan Baptist van Helmont, Robert Boyle, and Isaac Newton.

Source: Wikipedia, Britannica, The Story of Civilization I: Our Oriental Heritage, Vedic Science

Was it worth reading? Let us know.