Origin and Evolution of the Eye

This is a long and challenging topic of research. I have been spending weeks surfing the internet and even talking to evolution experts to learn how exactly did eyes evolve. This is a strange yet exciting article and I am sure the curious ones will not want to miss this. Let’s begin.

What did the organisms started seeing things?

The first fossils of eyes found to date are from the Ediacaran period (about 555 million years ago). The lower Cambrian had a burst of apparently rapid evolution, called the “Cambrian explosion”. The Cambrian explosion or Cambrian radiation was an event approximately 541 million years ago in the Cambrian period when practically all major animal phyla started appearing in the fossil record. It lasted for about 13 – 25million years and resulted in the divergence of most modern metazoan phyla. The event was accompanied by major diversification of other organisms.

One of the many hypotheses for “causes” of the Cambrian explosion is the “Light Switch” theory: it holds that the evolution of advanced eyes started an arms race that accelerated evolution. Before the Cambrian explosion, animals may have sensed light, but did not use it for fast locomotion or navigation by vision.

The rate of eye evolution is difficult to estimate, because the fossil record, particularly of the lower Cambrian, is poor. How fast a circular patch of photoreceptor cells can evolve into a fully functional vertebrate eye has been estimated based on rates of mutation, relative advantage to the organism, and natural selection. However, the time needed for each state was consistently overestimated and the generation time was set to one year, which is common in small animals. Even with these pessimistic values, the vertebrate eye would still evolve from a patch of photoreceptor cells in less than 364,000 years.

Whether the eye evolved once or many times depends on the definition of an eye. All eyed animals share much of the genetic machinery for eye development. This suggests that the ancestor of eyed animals had some form of light-sensitive machinery – even if it was not a dedicated optical organ. However, even photoreceptor cells may have evolved more than once from molecularly similar chemoreceptor cells. Probably, photoreceptor cells existed long before the Cambrian explosion. Higher-level similarities – such as the use of the protein crystallin in the independently derived cephalopod and vertebrate lenses – reflect the co-option of a more fundamental protein to a new function within the eye.

A shared trait common to all light-sensitive organs are opsins. Opsins belong to a family of photo-sensitive proteins and fall into nine groups, which already existed in the urbilaterian, the last common ancestor of all bilaterally symmetrical animals. Additionally, the genetic toolkit for positioning eyes is shared by all animals: The PAX6 gene controls where eyes develop in animals ranging from octopuses to mice and fruit flies. Such high-level genes are, by implication, much older than many of the structures that they control today; they must originally have served a different purpose, before they were co-opted for eye development.

Eyes and other sensory organs probably evolved before the brain: There is no need for an information-processing organ (brain) before there is information to process. A living example are Cubozoan jellyfish that possess eyes comparable to vertebrate and cephalopod camera eyes despite lacking a brain.

Stages of eye evolution

The earliest predecessors of the eye were photoreceptor proteins that sense light, found even in unicellular organisms, called “eyespots”. Eyespots can sense only ambient brightness: they can distinguish light from dark, sufficient for photoperiodism and daily synchronization of circadian rhythms. They are insufficient for vision, as they cannot distinguish shapes or determine the direction light is coming from. Eyespots are found in nearly all major animal groups, and are common among unicellular organisms, including euglena. The euglena’s eyespot, called a stigma, is located at its anterior end. It is a small splotch of red pigment which shades a collection of light sensitive crystals. Together with the leading flagellum, the eyespot allows the organism to move in response to light, often toward the light to assist in photosynthesis, and to predict day and night, the primary function of circadian rhythms. Visual pigments are located in the brains of more complex organisms, and are thought to have a role in synchronising spawning with lunar cycles. By detecting the subtle changes in night-time illumination, organisms could synchronise the release of sperm and eggs to maximise the probability of fertilisation.

Vision itself relies on a basic biochemistry which is common to all eyes. However, how this biochemical toolkit is used to interpret an organism’s environment varies widely: eyes have a wide range of structures and forms, all of which have evolved quite late relative to the underlying proteins and molecules.

Complex Eyes Development

  1. Early Eyes: The basic light-processing unit of eyes is the photoreceptor cell, a specialized cell containing two types of molecules in a membrane: the opsin, a light-sensitive protein bound to a chromophore, the pigment that absorbs light. Groups of such cells are termed “eyespots”, and have evolved independently somewhere between 40 and 65 times. These eyespots permit animals to gain only a basic sense of the direction and intensity of light, but not enough to discriminate an object from its surroundings.
  2. Lens formation: In a lensless eye, the light emanating from a distant point hits the back of the eye with about the same size as the eye’s aperture. With the addition of a lens this incoming light is concentrated on a smaller surface area, without reducing the overall intensity of the stimulus. The focal length of an early lobopod with lens-containing simple eyes focused the image behind the retina, so while no part of the image could be brought into focus, the intensity of light allowed the organism to see in deeper (and therefore darker) waters. A subsequent increase of the lens’s refractive index probably resulted in an in-focus image being formed. The development of the lens in camera-type eyes probably followed a different trajectory. The transparent cells over a pinhole eye’s aperture split into two layers, with liquid in between. The liquid originally served as a circulatory fluid for oxygen, nutrients, wastes, and immune functions, allowing greater total thickness and higher mechanical protection. In addition, multiple interfaces between solids and liquids increase optical power, allowing wider viewing angles and greater imaging resolution. Again, the division of layers may have originated with the shedding of skin; intracellular fluid may infill naturally depending on layer depth.
  3. Color vision: Five classes of visual opsins are found in vertebrates. All but one of these developed prior to the divergence of Cyclostomata and fish. The five opsin classes are variously adapted depending on the light spectrum encountered. As light travels through water, longer wavelengths, such as reds and yellows, are absorbed more quickly than the shorter wavelengths of the greens and blues. This creates a gradient of light as the depth of water increases. The visual opsins in fish are more sensitive to the range of light in their habitat and depth. However, land environments do not vary in wavelength composition, so that the opsin sensitivities among land vertebrates does not vary much. This directly contributes to the significant presence of communication colors. Color vision gives distinct selective advantages, such as better recognition of predators, food, and mates. Indeed, it is thought that simple sensory-neural mechanisms may selectively control general behavior patterns, such as escape, foraging, and hiding. Many examples of wavelength-specific behaviors have been identified, in two primary groups: Below 450 nm, associated with direct light, and above 450 nm, associated with reflected light. As opsin molecules were tuned to detect different wavelengths of light, at some point color vision developed when the photoreceptor cells used differently tuned opsins. This may have happened at any of the early stages of the eye’s evolution, and may have disappeared and reevolved as organisms became predator or prey. Similarly, night and day vision emerged when photoreceptor cells differentiated into rods and cones, respectively.


  • Science Daily
  • Google Scholars
  • Wikipedia

Was it worth reading? Let us know.